Жизнь животных тесно связана с окружающей их средой. Среда эта, конечно, у всех разная. Дельфины не покидают водных просторов, белки редко оставляют деревья, а кроты почти не расстаются со своими подземными галереями. Но как бы ни была различна среда обитания, устремления всех одинаковы: искать пищу, спасаться от врагов, продолжать свой род. Именно эти три вида деятельности составляют жизненно важное поведение любого животного. Осуществление же их самым непосредственным образом зависит от органов чувств, которые улавливают любые изменения, происходящие в окружающей среде. То, что органы чувств воспринимают из внешнего мира, современная наука называет информацией.
Задачу, возложенную на органы слуха животных, можно определить так: получить информацию путем анализа звуков — упругих волн, распространяющихся или в воде, или в воздухе, или в твердых телах — земле, древесине и т. д. Переоценить роль слуха в жизни животных невозможно. Когда на нашей планете зарождалась жизнь, только световые волны могли распространяться быстрее, чем звуковые. Но зрение информировало животных лишь о происходящем на расстоянии десятков метров. Что касается обоняния, с его помощью можно было получить сведения в основном при непосредственном контакте. Поэтому одна из главных ценностей звуковой информации заключалась как раз в том, что благодаря ей животные заранее узнавали нужное о существах, которые находились достаточно далеко — в сотнях метров. И в зависимости от этих сведений они заблаговременно принимали то или иное решение и вели себя соответственно.
Задачу, возложенную на органы слуха животных, можно определить так: получить информацию путем анализа звуков — упругих волн, распространяющихся или в воде, или в воздухе, или в твердых телах — земле, древесине и т. д. Переоценить роль слуха в жизни животных невозможно. Когда на нашей планете зарождалась жизнь, только световые волны могли распространяться быстрее, чем звуковые. Но зрение информировало животных лишь о происходящем на расстоянии десятков метров. Что касается обоняния, с его помощью можно было получить сведения в основном при непосредственном контакте. Поэтому одна из главных ценностей звуковой информации заключалась как раз в том, что благодаря ей животные заранее узнавали нужное о существах, которые находились достаточно далеко — в сотнях метров. И в зависимости от этих сведений они заблаговременно принимали то или иное решение и вели себя соответственно.
Жизнь животных тесно связана с окружающей их средой. Среда эта, конечно, у всех разная. Дельфины не покидают водных просторов, белки редко оставляют деревья, а кроты почти не расстаются со своими подземными галереями. Но как бы ни была различна среда обитания, устремления всех одинаковы: искать пищу, спасаться от врагов, продолжать свой род. Именно эти три вида деятельности составляют жизненно важное поведение любого животного. Осуществление же их самым непосредственным образом зависит от органов чувств, которые улавливают любые изменения, происходящие в окружающей среде. То, что органы чувств воспринимают из внешнего мира, современная наука называет информацией.
Задачу, возложенную на органы слуха животных, можно определить так: получить информацию путем анализа звуков — упругих волн, распространяющихся или в воде, или в воздухе, или в твердых телах — земле, древесине и т. д. Переоценить роль слуха в жизни животных невозможно. Когда на нашей планете зарождалась жизнь, только световые волны могли распространяться быстрее, чем звуковые. Но зрение информировало животных лишь о происходящем на расстоянии десятков метров. Что касается обоняния, с его помощью можно было получить сведения в основном при непосредственном контакте. Поэтому одна из главных ценностей звуковой информации заключалась как раз в том, что благодаря ей животные заранее узнавали нужное о существах, которые находились достаточно далеко — в сотнях метров. И в зависимости от этих сведений они заблаговременно принимали то или иное решение и вели себя соответственно.
Способ связи с помощью звука имеет немало и других преимуществ. Звуку не страшны препятствия, следовательно, он особенно важен для животных, жизнь которых проходит в укрытиях и зарослях. Звук дает возможность общаться и не демонстрировать при этом себя, что, разумеется, является большим подспорьем для видов, на которых охотятся хищники. Звуковой сигнал не нуждается в освещенности, и поэтому он незаменим для тех, кто ведет сумеречный и ночной образ жизни.
Но что значит «услышать звук»? Процесс этот довольно сложный, непросто устроен и звуковой анализатор. Если не вдаваться в подробности, то восприятие звука происходит примерно так: быстро чередующиеся звуковые волны высокого и низкого давления достигают барабанной перепонки, представляющей собой мембрану, и заставляют ее колебаться. С помощью среднего уха эти колебания передаются к чувствующим, или рецепторным, клеткам, и сигналы, поступив в мозг, воспринимаются как звуки. Но схема эта подходит не для всех животных. Одно из исключений — насекомые. Раз они издают разнообразные звуки, естественно предположить, что они их и слышат. Действительно, уши у насекомых есть, правда, устроены они своеобразно и находятся часто, как и звукообразующие органы, в самых неожиданных местах.
Первым, кто догадался, где расположен орган слуха у комаров, был Хайрем Стивене Максим. Да, тот самый Максим, который изобрел станковый пулемет.
В 1878 году на территории «Гранд юнион отель» в Нью-Йорке были установлены электрические фонари, поставили и трансформатор. В один из вечеров Максим, человек очень наблюдательный, заметил, что вокруг трансформатора летает масса комаров. Это были самцы: головы их украшали не простые антенны — «усики», а перистые. Но что притягивало их, словно магнитом, сюда? Чтобы понять происходящее, Максим решил прийти к трансформатору на следующий день пораньше и посмотреть все с самого начала. Настал вечер, включили освещение. Загудел от вибрации сердечника трансформатор, и полетели к нему отовсюду комары. Видимо, орган слуха у комаров находится в антеннах, а гул трансформатора похож на звуки самок, потому и происходит столпотворение вокруг него, — такой вывод сделал Максим и начал проводить эксперименты. С помощью камертона он имитировал жужжание самки и, услышав этот звук, комары каждый раз поворачивались к камертону и поднимали свои антенны.
Хотя современники Максима отнеслись с недоверием к его открытию, он оказался прав. Действительно, комары улавливают звуки своими антеннами: в них находится так называемый джонстонов орган. Расположен он в сильно увеличенном втором членике антенн и занимает почти всю его полость. Джонстонов орган состоит из нескольких тысяч радиально расположенных сенсилл — микроскопических органов, в которых чувствительные нейроны объединены со специальными клетками. Эти сенсиллы натянуты между стенками второго членика и мембраной, соединяющей его с третьим члеником. В результате малейшие колебания антенны передаются сенсиллам джонстонова органа, и соответствующая информация поступает в центральную нервную систему комара.
В отличие от комаров, у кузнечиков и сверчков уши находятся в голенях передних ног. Продольные узкие щели скрывают полости, в которых расположены своеобразные барабанные перепонки — тонкие, туго натянутые мембраны, способные вибрировать. Но чтобы мембрана под воздействием звуковых волн могла колебаться, давление воздуха должно быть с обеих сторон одинаковое. У людей и у млекопитающих это достигается при помощи узкой евстахиевой трубы, соединяющей среднее ухо с глоткой. Кузнечики и сверчки тоже имеют специальные приспособления, которые уравновешивают давление на мембрану: воздушные клапаны у них идут через центры ног и открываются на верхушке груди. По ним и поступает воздух за барабанную перепонку.
Пауки не отстают от своих прыгающих собратьев. У них уши находятся вблизи кончиков ног. В хитиновом покрове есть несколько сквозных отверстий, расположенных параллельно. Снаружи эти отверстия затянуты тонкой мембраной, такая же мембрана имеется на противоположной стороне отверстий. В полости между мембранами находится отросток чувствительной клетки, который и воспринимает вибрацию паутины и звуковые колебания различной частоты.
Слуховой орган кобылок так же, как кузнечиков и сверчков, снабжен мембраной, но расположен он на брюшке. А у водяных клопов-гребляков и у многих дневных и ночных бабочек уши находятся на груди.
Рыб считали долго не только немыми, но и глухими, хотя еще в 1820 году Эрнст Генрих Вебер пришел к заключению, что слух у них есть. Позже одни исследователи, наблюдавшие за поведением голавлей, уклеек, карпов, сомов и за их реакцией на звуки, делали вывод, что рыбы слышат, другие же, наоборот, не видя какой-либо реакции, отрицали это. Ошибка их была в том, что отсутствие реакции — еще не показатель глухоты: ведь данный звук просто мог не иметь для рыбы никакого значения.
История поиска органов, с помощью которых рыбы слышат, не менее длинна и запутанна. Убедительные доказательства, где находятся уши у рыб, были представлены лишь в 1932 году после тщательных экспериментов, проведенных на гольяне.
Естественно, у рыб тоже нет органа, который присущ нам и многим другим млекопитающим и который мы называем ухом. Во-первых, он бы затруднял движение рыб в воде, а, во-вторых, он им просто не нужен: их тело прозрачно для звука. Но именно это обстоятельство и послужило в свое время для некоторых ученых аргументом, что рыбы не могут слышать.
Если продолжать сравнивать дальше орган слуха рыб с нашим, то окажется, что рыбы не имеют и среднего уха, состоящего, как известно, из барабанной перепонки и слуховых косточек. Подобное устройство им тоже не подходит: слишком часто в зависимости от глубины меняется давление. Зато хорошо развитое внутреннее ухо рыб, как и у нас, находится на голове, по обеим ее сторонам. Расположено оно в сложно устроенном лабиринте, состоящем из трех каналов (изогнутых полукругом трубок), которые идут перпендикулярно друг к другу. Полукружные каналы служат органом равновесия и отношения к слуху не имеют. Но сбоку от них, в нижней части лабиринта, находятся два своеобразных органа — лагена и саккулюс. Они-то и являются слуховыми приемниками. Эти отделы лабиринта рыб воспринимают звуковые волны, раздражение по нервам передается в головной мозг и в зависимости от поступившей информации рыба или реагирует на сигнал, или оставляет его без внимания.
Несмотря на то, что у рыб нет среднего уха, некоторые из них — карпы, сомы и многие другие — имеют орган, с успехом его заменяющий. Этим органом является плавательный пузырь. Он соединяется с внутренним ухом при помощи веберова аппарата (четырех пар косточек) и действует аналогично нашей барабанной перепонке. Вибрация его стенок передается через веберов аппарат и воспринимается внутренним ухом рыбы. Плавательный пузырь повышает чувствительность слуха и расширяет диапазон воспринимаемых частот. Все это позволяет обитателям вод слышать сигналы, раздающиеся на большом расстоянии.
Но рыбы располагают еще двумя своеобразными органами, с помощью которых они могут слышать звуки. Первый из них — кожа, ее рецепторы воспринимают интенсивные сигналы. Второй орган — боковая линия. Чувствительные клетки боковой линии похожи на клетки лабиринта: на вершине они оканчиваются волосками, а на противоположной стороне — веточкой нерва. Располагаются они внутри канала, который тянется вдоль туловища от головы до хвоста, и имеют выход во внешнюю среду. Почти у всех рыб есть по одному каналу с каждой стороны, однако у некоторых их бывает шесть и больше.
Органы боковой линии способны воспринимать звуки низких частот, до 500—600 герц. Они не менее необходимы рыбе, чем саккулюс, лагена и плавательный пузырь. С их помощью она может тонко анализировать ситуацию вблизи источника звука.
Задачу, возложенную на органы слуха животных, можно определить так: получить информацию путем анализа звуков — упругих волн, распространяющихся или в воде, или в воздухе, или в твердых телах — земле, древесине и т. д. Переоценить роль слуха в жизни животных невозможно. Когда на нашей планете зарождалась жизнь, только световые волны могли распространяться быстрее, чем звуковые. Но зрение информировало животных лишь о происходящем на расстоянии десятков метров. Что касается обоняния, с его помощью можно было получить сведения в основном при непосредственном контакте. Поэтому одна из главных ценностей звуковой информации заключалась как раз в том, что благодаря ей животные заранее узнавали нужное о существах, которые находились достаточно далеко — в сотнях метров. И в зависимости от этих сведений они заблаговременно принимали то или иное решение и вели себя соответственно.
Способ связи с помощью звука имеет немало и других преимуществ. Звуку не страшны препятствия, следовательно, он особенно важен для животных, жизнь которых проходит в укрытиях и зарослях. Звук дает возможность общаться и не демонстрировать при этом себя, что, разумеется, является большим подспорьем для видов, на которых охотятся хищники. Звуковой сигнал не нуждается в освещенности, и поэтому он незаменим для тех, кто ведет сумеречный и ночной образ жизни.
Но что значит «услышать звук»? Процесс этот довольно сложный, непросто устроен и звуковой анализатор. Если не вдаваться в подробности, то восприятие звука происходит примерно так: быстро чередующиеся звуковые волны высокого и низкого давления достигают барабанной перепонки, представляющей собой мембрану, и заставляют ее колебаться. С помощью среднего уха эти колебания передаются к чувствующим, или рецепторным, клеткам, и сигналы, поступив в мозг, воспринимаются как звуки. Но схема эта подходит не для всех животных. Одно из исключений — насекомые. Раз они издают разнообразные звуки, естественно предположить, что они их и слышат. Действительно, уши у насекомых есть, правда, устроены они своеобразно и находятся часто, как и звукообразующие органы, в самых неожиданных местах.
Первым, кто догадался, где расположен орган слуха у комаров, был Хайрем Стивене Максим. Да, тот самый Максим, который изобрел станковый пулемет.
В 1878 году на территории «Гранд юнион отель» в Нью-Йорке были установлены электрические фонари, поставили и трансформатор. В один из вечеров Максим, человек очень наблюдательный, заметил, что вокруг трансформатора летает масса комаров. Это были самцы: головы их украшали не простые антенны — «усики», а перистые. Но что притягивало их, словно магнитом, сюда? Чтобы понять происходящее, Максим решил прийти к трансформатору на следующий день пораньше и посмотреть все с самого начала. Настал вечер, включили освещение. Загудел от вибрации сердечника трансформатор, и полетели к нему отовсюду комары. Видимо, орган слуха у комаров находится в антеннах, а гул трансформатора похож на звуки самок, потому и происходит столпотворение вокруг него, — такой вывод сделал Максим и начал проводить эксперименты. С помощью камертона он имитировал жужжание самки и, услышав этот звук, комары каждый раз поворачивались к камертону и поднимали свои антенны.
Хотя современники Максима отнеслись с недоверием к его открытию, он оказался прав. Действительно, комары улавливают звуки своими антеннами: в них находится так называемый джонстонов орган. Расположен он в сильно увеличенном втором членике антенн и занимает почти всю его полость. Джонстонов орган состоит из нескольких тысяч радиально расположенных сенсилл — микроскопических органов, в которых чувствительные нейроны объединены со специальными клетками. Эти сенсиллы натянуты между стенками второго членика и мембраной, соединяющей его с третьим члеником. В результате малейшие колебания антенны передаются сенсиллам джонстонова органа, и соответствующая информация поступает в центральную нервную систему комара.
В отличие от комаров, у кузнечиков и сверчков уши находятся в голенях передних ног. Продольные узкие щели скрывают полости, в которых расположены своеобразные барабанные перепонки — тонкие, туго натянутые мембраны, способные вибрировать. Но чтобы мембрана под воздействием звуковых волн могла колебаться, давление воздуха должно быть с обеих сторон одинаковое. У людей и у млекопитающих это достигается при помощи узкой евстахиевой трубы, соединяющей среднее ухо с глоткой. Кузнечики и сверчки тоже имеют специальные приспособления, которые уравновешивают давление на мембрану: воздушные клапаны у них идут через центры ног и открываются на верхушке груди. По ним и поступает воздух за барабанную перепонку.
Пауки не отстают от своих прыгающих собратьев. У них уши находятся вблизи кончиков ног. В хитиновом покрове есть несколько сквозных отверстий, расположенных параллельно. Снаружи эти отверстия затянуты тонкой мембраной, такая же мембрана имеется на противоположной стороне отверстий. В полости между мембранами находится отросток чувствительной клетки, который и воспринимает вибрацию паутины и звуковые колебания различной частоты.
Слуховой орган кобылок так же, как кузнечиков и сверчков, снабжен мембраной, но расположен он на брюшке. А у водяных клопов-гребляков и у многих дневных и ночных бабочек уши находятся на груди.
Рыб считали долго не только немыми, но и глухими, хотя еще в 1820 году Эрнст Генрих Вебер пришел к заключению, что слух у них есть. Позже одни исследователи, наблюдавшие за поведением голавлей, уклеек, карпов, сомов и за их реакцией на звуки, делали вывод, что рыбы слышат, другие же, наоборот, не видя какой-либо реакции, отрицали это. Ошибка их была в том, что отсутствие реакции — еще не показатель глухоты: ведь данный звук просто мог не иметь для рыбы никакого значения.
История поиска органов, с помощью которых рыбы слышат, не менее длинна и запутанна. Убедительные доказательства, где находятся уши у рыб, были представлены лишь в 1932 году после тщательных экспериментов, проведенных на гольяне.
Естественно, у рыб тоже нет органа, который присущ нам и многим другим млекопитающим и который мы называем ухом. Во-первых, он бы затруднял движение рыб в воде, а, во-вторых, он им просто не нужен: их тело прозрачно для звука. Но именно это обстоятельство и послужило в свое время для некоторых ученых аргументом, что рыбы не могут слышать.
Если продолжать сравнивать дальше орган слуха рыб с нашим, то окажется, что рыбы не имеют и среднего уха, состоящего, как известно, из барабанной перепонки и слуховых косточек. Подобное устройство им тоже не подходит: слишком часто в зависимости от глубины меняется давление. Зато хорошо развитое внутреннее ухо рыб, как и у нас, находится на голове, по обеим ее сторонам. Расположено оно в сложно устроенном лабиринте, состоящем из трех каналов (изогнутых полукругом трубок), которые идут перпендикулярно друг к другу. Полукружные каналы служат органом равновесия и отношения к слуху не имеют. Но сбоку от них, в нижней части лабиринта, находятся два своеобразных органа — лагена и саккулюс. Они-то и являются слуховыми приемниками. Эти отделы лабиринта рыб воспринимают звуковые волны, раздражение по нервам передается в головной мозг и в зависимости от поступившей информации рыба или реагирует на сигнал, или оставляет его без внимания.
Несмотря на то, что у рыб нет среднего уха, некоторые из них — карпы, сомы и многие другие — имеют орган, с успехом его заменяющий. Этим органом является плавательный пузырь. Он соединяется с внутренним ухом при помощи веберова аппарата (четырех пар косточек) и действует аналогично нашей барабанной перепонке. Вибрация его стенок передается через веберов аппарат и воспринимается внутренним ухом рыбы. Плавательный пузырь повышает чувствительность слуха и расширяет диапазон воспринимаемых частот. Все это позволяет обитателям вод слышать сигналы, раздающиеся на большом расстоянии.
Но рыбы располагают еще двумя своеобразными органами, с помощью которых они могут слышать звуки. Первый из них — кожа, ее рецепторы воспринимают интенсивные сигналы. Второй орган — боковая линия. Чувствительные клетки боковой линии похожи на клетки лабиринта: на вершине они оканчиваются волосками, а на противоположной стороне — веточкой нерва. Располагаются они внутри канала, который тянется вдоль туловища от головы до хвоста, и имеют выход во внешнюю среду. Почти у всех рыб есть по одному каналу с каждой стороны, однако у некоторых их бывает шесть и больше.
Органы боковой линии способны воспринимать звуки низких частот, до 500—600 герц. Они не менее необходимы рыбе, чем саккулюс, лагена и плавательный пузырь. С их помощью она может тонко анализировать ситуацию вблизи источника звука.